ANALYSE DES DONNÉES MULTIDIMENSIONNELLES - volume IV : aspects m

€18.45
Tax included

Sommaire
I. Le modèle linéaire. II. L'analyse discriminante.

Public
Ces différents volumes représentent des outils indispensables pour les chercheurs dans le domaine des sciences de l'homme et pour les étudiants en Mathématiques et Economie.

Quantity
Add to wishlist
In Stock

Sommaire
I. Le modèle linéaire. II. L'analyse discriminante.

Public
Ces différents volumes représentent des outils indispensables pour les chercheurs dans le domaine des sciences de l'homme et pour les étudiants en Mathématiques et Economie.

2.905972.26.2
100 Items
New

16 other products in the same category:

Availability: 100 In Stock

Sommaire

Eléments de combinatoire. Etude des complexes. Etude des suites. La récurrence. La continuité. La dérivation. Fonctions logarithme, exponentielle et puissance. Les équivalents. Les fonctions trigonométriques réciproques, hyperboliques et hyperboliques réciproques. La convexité. Les accroissements finis. Les polynômes. Les formules de Taylor-Lagrange, Taylor-Maclaurin et Taylor-Young. Les fractions rationnelles. Les développements limités. Etude de fonctions. L'intégration généralisée. Equations différentielles d'ordre 1 et d'ordre 2.

Public
Enseignants et étudiants de l'enseignement supérieur technique (IUT, STS, classes préparatoires technologiques, universités) et formation continue (CNAM).

Resumé
Cet ouvrage contient 121 exercices entièrement corrigés, 12 sujets avec indications de solutions, et des figures illustrant les explications. Une partie élément de cours avec exercices entièrement corrigés précède des annexes constitués de douze sujets avec indications des solutions et de tables complétant les éléments de cours. Il s'intègre dans une collection intitulée "Eléments de cours, exercices entièrement corrigés et sujets avec indications de solutions". Cette série d'ouvrage vise à satisfaire entièrement aux exigences Mathématiques, scientifiques et techniques du premier cycle d'enseignement supérieur technique et à certains cours du deuxième cycles.

Availability: 99 In Stock

  Sommaire

I. Topologie. II. Analyse fonctionnelle. III. Nombres réels. IV. Suites numériques. V. Fonctions. VI. Intégration. VII. Séries. VIII. Equations différentielles. IX. Analyse numérique. X. Probabilités. XI. Sujets de synthèse.
Public
"""Le vade-mecum de l'oral d'analyse"" s'adresse aux candidats à l'agrégation de Mathématiques."

 

 

Availability: 100 In Stock

Sommaire
I. But et objet de la méthode. II. Les outils de la classification : indice de dissimilarité, dissimilarités classiques sur IRn, ultramétriques, dissimilarités sur un ensemble de parties, partition d'un ensemble, hiérarchies de parties, hiérarchie indicée de parties. III. Les principales méthodes de classification.

Public
Ces différents volumes représentent des outils indispensables pour les chercheurs dans le domaine des sciences de l'homme et pour les étudiants en Mathématiques et Economie.

Availability: 98 In Stock

 

Public

Etudiants et professeurs du premier cycle d'université.

 


Resumé
"Cette cinquième édition du cours de Mathématiques de 2e année d'Université est une version complètement refondue et révisée du cours et des exercices corrigés d'analyse. Cet ouvrage fait suite à l'ouvrage publié dans la même collection : "Mathématiques de 1re année".
Sommaire
Séries numériques. Intégrales généralisées. Limite d'une suite de fonctions. Intégrales dépendant d'un paramètre. Série entières. Normes et suite convergentes. Série de Fourier."

Availability: 99 In Stock

Sommaire
I. Séries numériques. II. Intégrales généralisées. III. Limite d'une suite de fonctions. IV. Intégrales dépendant d'un paramètre. V. Séries entières. VI. Normes en calcul vectoriel appliqué. VII. Convergence de suites de vecteurs. VIII. Analyse de Fourier des signaux périodiques. IX. Utilisation de résultats de topologie. X. Calcul différentiel.

Public
L'étudiant dispose, avec les deux volumes de cours et les trois volumes d'exercices, d'un outil de travail complet pour suivre sa progression scientifique et couvrir le programme des deux premières an

Resumé
Les exercices proposés ici répondent à un double objectif : assimiler en profondeur des notions nouvelles puis être capable d'aborder des sujets plus élaborés. Ils sont précédés, par chapitre, de commentaires permettant de mieux centrer le travail de l'étudiant sur les points clés du programme. A chaque chapitre sont associés des exercices spécifiques : les exercices notés A, de difficulté croissante, éclairent les théorèmes et les techniques fondamentaux. Les exercices notés B sont des sujets d'examens ou des textes demandant plus de recherche.

 

This website uses cookies to ensure you get the best experience on our website