TOUT FUT FAIT AVEC MESURE, NOMBRE ET POIDS
    TOUT FUT FAIT AVEC MESURE, NOMBRE ET POIDS

TOUT FUT FAIT AVEC MESURE, NOMBRE ET POIDS

€20.00
Tax included

 

La fameuse phrase, qui constitue le titre de cet ouvrage et qui a tant plongé dans la perplexité des générations de philosophes, est tirée du Livre de la Sagesse. Elle trouve aujourd’hui une nouvelle interprétation. Une histoire des nombres et en particulier du nombre 0 est une introduction à une approche d’un pythagorisme latent de la science contemporaine. Malgré cette mise en garde, une métaphysique du nombre innerve la pensée contemporaine et la pythagorise.  En conclusion, un regard sur la causalité en mathématique tentera d’éclairer le concept d’objet mathématique et du platonisme qui est si souvent présent chez les mathématiciens.
 
Jacques VAUTHIER est professeur honoraire de mathématiques de la Sorbonne (Paris 6, Pierre et Marie Curie). Il enseigne actuellement à l’université de Corse, Pascal Paoli la philosophie des sciences.
Quantity
Add to wishlist
In Stock

 

La fameuse phrase, qui constitue le titre de cet ouvrage et qui a tant plongé dans la perplexité des générations de philosophes, est tirée du Livre de la Sagesse. Elle trouve aujourd’hui une nouvelle interprétation. Une histoire des nombres et en particulier du nombre 0 est une introduction à une approche d’un pythagorisme latent de la science contemporaine. Malgré cette mise en garde, une métaphysique du nombre innerve la pensée contemporaine et la pythagorise.  En conclusion, un regard sur la causalité en mathématique tentera d’éclairer le concept d’objet mathématique et du platonisme qui est si souvent présent chez les mathématiciens.
 
Jacques VAUTHIER est professeur honoraire de mathématiques de la Sorbonne (Paris 6, Pierre et Marie Curie). Il enseigne actuellement à l’université de Corse, Pascal Paoli la philosophie des sciences.
9782747218856
100 Items
New

16 other products in the same category:

Availability: 100 In Stock

Sommaire

Eléments de combinatoire. Etude des complexes. Etude des suites. La récurrence. La continuité. La dérivation. Fonctions logarithme, exponentielle et puissance. Les équivalents. Les fonctions trigonométriques réciproques, hyperboliques et hyperboliques réciproques. La convexité. Les accroissements finis. Les polynômes. Les formules de Taylor-Lagrange, Taylor-Maclaurin et Taylor-Young. Les fractions rationnelles. Les développements limités. Etude de fonctions. L'intégration généralisée. Equations différentielles d'ordre 1 et d'ordre 2.

Public
Enseignants et étudiants de l'enseignement supérieur technique (IUT, STS, classes préparatoires technologiques, universités) et formation continue (CNAM).

Resumé
Cet ouvrage contient 121 exercices entièrement corrigés, 12 sujets avec indications de solutions, et des figures illustrant les explications. Une partie élément de cours avec exercices entièrement corrigés précède des annexes constitués de douze sujets avec indications des solutions et de tables complétant les éléments de cours. Il s'intègre dans une collection intitulée "Eléments de cours, exercices entièrement corrigés et sujets avec indications de solutions". Cette série d'ouvrage vise à satisfaire entièrement aux exigences Mathématiques, scientifiques et techniques du premier cycle d'enseignement supérieur technique et à certains cours du deuxième cycles.

Availability: 99 In Stock

  Sommaire

I. Topologie. II. Analyse fonctionnelle. III. Nombres réels. IV. Suites numériques. V. Fonctions. VI. Intégration. VII. Séries. VIII. Equations différentielles. IX. Analyse numérique. X. Probabilités. XI. Sujets de synthèse.
Public
"""Le vade-mecum de l'oral d'analyse"" s'adresse aux candidats à l'agrégation de Mathématiques."

 

 

Availability: 98 In Stock

  Sommaire

Eléments sur les suites et séries. Suites et séries numériques. Suites et séries de fonctions. Séries entières. Série de Fourier. Eléments sur les transformations fonctionnelles. Transformations de Laplace. Transformations de Fourier. Eléments de calcul intégral. Généralités sur les intégrales doubles et triples. Généralités sur les intégrales curvilignes et de surface. Applications du calcul intégral.

Public
Enseignants et étudiants de l'enseignement supérieur technique (IUT, STS, classes préparatoires technologiques, universités) et formation continue (CNAM).

Resumé
Cet ouvrage contient 111 exercices entièrement corrigés, 12 sujets avec indications de solutions, et 80 figures illustrant les explications. Il est consacré à l'étude des séries (numériques et fonctionnelles), des transformations de fonctions (Laplace et Fourier) et des différentes sortes d'intégrations (multiples, curviligne, de surface) avec leurs applications. Cette série d'ouvrage vise à satisfaire entièrement aux exigences Mathématiques, scientifiques et techniques du premier cycle d'enseignement supérieur technique et à certains cours du deuxième cycle.

Availability: 100 In Stock

Sommaire
I. Préliminaires II. Systèmes linéaires III. Calcul matriciel IV. Espaces vectoriels V. Applications linéaires. Matrices VI. L'algèbre des polynômes VII. Les déterminants VIII. Réduction d'un endomorphisme IX. Les suites X. Les fonctions "adaptées" aux suites : les fonctions continues XI. Comparaison. Etude locale d'une fonction XII. Etude globale des fonctions XIII. Intégration XIV. Equations différentielles XV. Eléments sur les fonctions de plusieurs variables.

Public
L'auteur s'est attaché à assurer la transition avec l'enseignement secondaire et offrir ainsi un livre qui peut être utilisé dès la fin de la terminale mais aussi pour la préparation du CAPES.

Resumé
Ce livre se veut le plus direct possible par un langage simple et vivant. Le style proche d'un cours d'amphithéâtre pour captiver le lecteur autant que faire se peut. Remarques, commentaires, annonces de résultats, tout doit concourir à faciliter le travail de l'étudiant qu'il doit sur un campus ou à distance. Des résumés en fin de chapitre rassemblent non seulement les résultats mais aussi les points clefs des démonstrations. L'étudiant sera aidé par là-même pour faire des exercices : les outils fondamentaux seront à sa disposition clairement exposés et non pas enfouis dans les démonstrations.

This website uses cookies to ensure you get the best experience on our website