Also available in epub format
ALGEBRE : exercices et corrigés de 2e année d'université - 2e éd
- Write a review
Public
Les étudiants préparant le DEUG de Mathématiques, les concours aux Grandes Ecoles
Resumé
"Le présent livre de M. et P. Krée - J. Vauthier est une version complètement refondue et révisée de la partie de trois volumes concernant le cours et les exercices corrigés d'algèbre. Cet ouvrage fait suite à l'ouvrage publié cette année dans la même collection : " Mathématiques de 1re année " J. Vauthier avec la collaboration de C. Cazes et A.C. Vauthier."
Thank you for the reviews ! Your comment is submitted
16 other products in the same category:
CONTENU : Voici un ouvrage qui aborde dans une forme simple, concise, illustrée d'exemples et de graphiques, le monde des chiffres et des nombres qui encadre l'existence de l‘homme. Ceux qui cherchent l'information, le soutien et l'explication puiseront amplement dans ce livre qui n'est pas un manuel scolaire, mais un lexique spécial, il faut en convenir.
Sommaire
I. Le modèle linéaire. II. L'analyse discriminante.
Public
Ces différents volumes représentent des outils indispensables pour les chercheurs dans le domaine des sciences de l'homme et pour les étudiants en Mathématiques et Economie.
I. Algèbre : - Rappels : groupe, anneau, corps. Les nombres complexes - Systèmes linéaires - Calcul matriciel - Espaces vectoriels - Applications linéaires. Matrices - L'algèbre des polynômes - Déterminants - Réduction d'un endomorphisme - Dualité. II. Analyse : - Les suites - Continuité - Dérivabilité - Développements asymptomatiques - Fonctions numériques de deux variables réelles.
Public
Ce premier volume correspond à l'enseignement de première année de DEUG.
Resumé
Le cours proposé ici est conforme aux nouveaux programmes qui ont été définis, dans le cadre des diplômes nationaux, à travers l'expérience de l'enseignement de premier cycle faite par l'Université Pierre-et-Marie-Curie. L'organisation de l'ouvrage permet à l'étudiant de ne pas se perdre : approche opérationnelle pour l'Algèbre Linéaire, approche thématique pour l'Analyse.
Sommaire
Public
Enseignants et étudiants de l'enseignement supérieur technique (IUT, STS, classes préparatoires technologiques, universités) et formation continue (CNAM).
Resumé
Cet ouvrage contient 111 exercices entièrement corrigés, 12 sujets avec indications de solutions, et 80 figures illustrant les explications. Il est consacré à l'étude des séries (numériques et fonctionnelles), des transformations de fonctions (Laplace et Fourier) et des différentes sortes d'intégrations (multiples, curviligne, de surface) avec leurs applications. Cette série d'ouvrage vise à satisfaire entièrement aux exigences Mathématiques, scientifiques et techniques du premier cycle d'enseignement supérieur technique et à certains cours du deuxième cycle.
Sommaire
Public
Enseignants et étudiants de l'enseignement supérieur technique (IUT, STS, classes préparatoires technologiques, universités) et formation continue (CNAM).
Resumé
Cet ouvrage contient 121 exercices entièrement corrigés, 12 sujets avec indications de solutions, et des figures illustrant les explications. Une partie élément de cours avec exercices entièrement corrigés précède des annexes constitués de douze sujets avec indications des solutions et de tables complétant les éléments de cours. Il s'intègre dans une collection intitulée "Eléments de cours, exercices entièrement corrigés et sujets avec indications de solutions". Cette série d'ouvrage vise à satisfaire entièrement aux exigences Mathématiques, scientifiques et techniques du premier cycle d'enseignement supérieur technique et à certains cours du deuxième cycles.
Public
Resumé
"Le présent livre de M. et P. Krée - J. Vauthier est une version complètement refondue et révisée de la partie de trois volumes concernant le cours et les exercices corrigés de géométrie. Cet ouvrage fait suite à l'ouvrage publié cette année dans la même collection : " Mathématiques de 1re année " J. Vauthier avec la collaboration de C. Cazes et A.C. Vauthier."
I. Généralités. II. Un problème de discrimination. III. Incertitude. IV. Algorithme de SIPINA. V. Logiciel de SIPINA. VI. Applications.
Public
Cet ouvrage répond à des problèmes posés par des sociologues, biologistes, psychologues, médecins et leur apportera des réponses à leur recherche.
Public
Universitaire
Resumé
Cet ouvrage couvre l’intégralité du programme de Mathématiques des deux premières années L1 et L2 de la Licence de Mathématiques en Algèbre-Analyse-Géométrie.
J.C. Leccia, professeur de Mathématiques spéciales, apporte sa compétence pour la préparation des élèves aux grands concours."
Public
Les agrégatifs trouvent là une mine d'exemples pour leurs leçons et les professeurs des classes préparatoires des thèmes pour leurs élèves.
Resumé
"Le concours de l'école Polytechnique est le concours de référence pour les élèves des classes préparatoires scientifiques. Aucun ouvrage à ce jour ne comportait d'une manière aussi exhaustive les problèmes posés à l'oral de cette prestigieuse école. J. Vauthier, après huit années passées à interroger au grand oral, livre ici ses exercices
I. Séries numériques. II. Intégrales généralisées. III. Limite d'une suite de fonctions. IV. Intégrales dépendant d'un paramètre. V. Séries entières. VI. Normes en calcul vectoriel appliqué. VII. Convergence de suites de vecteurs. VIII. Analyse de Fourier des signaux périodiques. IX. Utilisation de résultats de topologie. X. Calcul différentiel.
Public
L'étudiant dispose, avec les deux volumes de cours et les trois volumes d'exercices, d'un outil de travail complet pour suivre sa progression scientifique et couvrir le programme des deux premières an
Resumé
Les exercices proposés ici répondent à un double objectif : assimiler en profondeur des notions nouvelles puis être capable d'aborder des sujets plus élaborés. Ils sont précédés, par chapitre, de commentaires permettant de mieux centrer le travail de l'étudiant sur les points clés du programme. A chaque chapitre sont associés des exercices spécifiques : les exercices notés A, de difficulté croissante, éclairent les théorèmes et les techniques fondamentaux. Les exercices notés B sont des sujets d'examens ou des textes demandant plus de recherche.
I. But et objet de la méthode. II. Les outils de la classification : indice de dissimilarité, dissimilarités classiques sur IRn, ultramétriques, dissimilarités sur un ensemble de parties, partition d'un ensemble, hiérarchies de parties, hiérarchie indicée de parties. III. Les principales méthodes de classification.
Public
Ces différents volumes représentent des outils indispensables pour les chercheurs dans le domaine des sciences de l'homme et pour les étudiants en Mathématiques et Economie.
Sommaire
I. Le modèle général d'évaluation. II. Les méthodes classiques de construction de la relation de référence. III. Les méthodes multicritères. IV. Indicateurs.
Public
Cet ouvrage est un outil indispensable pour les mathématiciens et les économistes de la santé.
Sommaire
Public
L'étudiant dispose avec les deux volumes de cours et les trois volumes d'exercices, d'un outil de travail complet pour suivre sa progression scientifique et couvrir le programme des deux premières ann
Resumé
Les exercices proposés ici répondent à un double objectif : assimiler en profondeur des notions nouvelles, puis être capable d'aborder des sujets plus élaborés. Ils sont précédés, par chapitre, de commentaires permettant de mieux centrer le travail de l'étudiant sur les points clefs du programme de la première année de DEUG. Les exercices notés A, de difficulté croissante, éclairent les théorèmes et les techniques fondamentaux. Les exercices notés B sont des sujets d'examens ou des textes demandant plus de recherche.
Public
Resumé
"Cette cinquième édition du cours de Mathématiques de 2e année d'Université est une version complètement refondue et révisée du cours et des exercices corrigés d'analyse. Cet ouvrage fait suite à l'ouvrage publié dans la même collection : "Mathématiques de 1re année".
Sommaire
Séries numériques. Intégrales généralisées. Limite d'une suite de fonctions. Intégrales dépendant d'un paramètre. Série entières. Normes et suite convergentes. Série de Fourier."