EXERCICES DE MATHÉMATIQUES : DEUG 2e année - volume 2 : algèbre

€22.87
Tax included
Quantity
Add to wishlist
In Stock

Sommaire
"Algèbre : - Polynôme minimum - Théorie spectrale d'un endomorphisme - Réduction de la matrice d'un endomorphisme - Système différentiel - Espaces hermitiens et euclidiens - Système orthonormés - Formes bilinéaires - Adjoint. Opérateurs hermitiens et unitaires - Endomorphismes normaux - Quadriques et coniques.
Géométrie : - Courbes et surfaces - Intégrales multiples - Formes différentielles, intégrales de surface - Théorème de Stokes - Théorème des résidus."

Public
L'étudiant dispose ainsi, avec les deux volumes de cours et les trois volumes d'exercices, d'un outil de travail complet pour suivre sa progression scientifique et couvrir le programme des deux premiè

 


Resumé
Les exercices proposés ici répondent à un double objectif : assimiler en profondeur des notions nouvelles, puis être capable d'aborder des sujets plus élaborés. Ils sont précédés, par chapitre, de commentaires permettant de mieux centrer le travail de l'étudiant sur les points clés du programme. Les exercices notés A, de difficulté croissante, éclairent les théorèmes et les techniques fondamentaux. Les exercices notés B sont des sujets d'examens ou des textes demandant plus de recherche.

 

2.86911.018.9
95 Items
New

16 other products in the same category:

Availability: 99 In Stock

Sommaire
I. Séries numériques. II. Intégrales généralisées. III. Limite d'une suite de fonctions. IV. Intégrales dépendant d'un paramètre. V. Séries entières. VI. Normes en calcul vectoriel appliqué. VII. Convergence de suites de vecteurs. VIII. Analyse de Fourier des signaux périodiques. IX. Utilisation de résultats de topologie. X. Calcul différentiel.

Public
L'étudiant dispose, avec les deux volumes de cours et les trois volumes d'exercices, d'un outil de travail complet pour suivre sa progression scientifique et couvrir le programme des deux premières an

Resumé
Les exercices proposés ici répondent à un double objectif : assimiler en profondeur des notions nouvelles puis être capable d'aborder des sujets plus élaborés. Ils sont précédés, par chapitre, de commentaires permettant de mieux centrer le travail de l'étudiant sur les points clés du programme. A chaque chapitre sont associés des exercices spécifiques : les exercices notés A, de difficulté croissante, éclairent les théorèmes et les techniques fondamentaux. Les exercices notés B sont des sujets d'examens ou des textes demandant plus de recherche.

 

Availability: 100 In Stock

  Sommaire

I. Rappels, groupes, anneau, corps, les nombres complexes. II. Systèmes linéaires. III. Calcul matriciel. IV. Espaces vectoriels. V. Applications linéaires. Matrices. IV. Les suites de nombres réels. VII. Les fonctions continues. VIII. Le calcul différentiel. IX. L'intégration. X. Les séries.

Public
Cet ouvrage a pour objectif d'aider tous ceux qui vont affronter les classes préparatoires avant les concours d'entrée aux grandes écoles.

Resumé
Tout le monde s'accorde à dire que le passage des élèves de terminale en classes préparatoires est redoutable par le fossé qu'il faut franchir. Les programmes du secondaire n'ont plus pour ambition de préparer à ces classes de concours où la masse de données scientifiques est incomparable en regard des connaissances de tout bachelier. Ce livre est là pour aider à acquérir ce qu'un bon bachelier devrait connaître des structures, de l'algèbre linéaire et de l'analyse. Ecrit sur un mode plaisant, il doit aider en un mois d'été à se mettre dans la perspective d'une classe préparatoire : c'est un travail nécessaire pour qui veut réussir dans ces classes.

 

Availability: 90 In Stock

  Resumé
Cet ouvrage couvre l’intégralité du programme de Mathématiques des deux premières années L1 et L2 de la Licence de Mathématiques en Algèbre-Analyse-Géométrie.La réforme dite du « L,M,D » ou Licence, Maîtrise et Doctorat nécessite une réforme des ouvrages mis à la disposition des étudiants.

Availability: 99 In Stock

  Sommaire

I. Topologie. II. Analyse fonctionnelle. III. Nombres réels. IV. Suites numériques. V. Fonctions. VI. Intégration. VII. Séries. VIII. Equations différentielles. IX. Analyse numérique. X. Probabilités. XI. Sujets de synthèse.
Public
"""Le vade-mecum de l'oral d'analyse"" s'adresse aux candidats à l'agrégation de Mathématiques."

 

 

Availability: 100 In Stock

  Sommaire

I. R et les suites. II. Les fonctions "adaptées" aux suites : les fonctions continues. III. Comparaison, étude locale d'une fonction. IV. Etude globale des fonctions. V. Intégration et équations différentielles. VI. Eléments sur les fonctions de plusieurs variables. VII. Analyse numérique.

Public
Cet ouvrage s'adresse aux étudiants de DEUG ou bien préparant le CAPES, aux Classes Préparatoires et aux professeurs qui souhaitent avoir une approche didactique.

Availability: 98 In Stock

  Public

Les étudiants préparant le DEUG de Mathématiques, les concours aux Grandes Ecoles.

Resumé
"Le présent livre de M. et P. Krée - J. Vauthier est une version complètement refondue et révisée de la partie de trois volumes concernant le cours et les exercices corrigés de géométrie. Cet ouvrage fait suite à l'ouvrage publié cette année dans la même collection : " Mathématiques de 1re année " J. Vauthier avec la collaboration de C. Cazes et A.C. Vauthier."

Availability: 98 In Stock

  Sommaire

Eléments sur les suites et séries. Suites et séries numériques. Suites et séries de fonctions. Séries entières. Série de Fourier. Eléments sur les transformations fonctionnelles. Transformations de Laplace. Transformations de Fourier. Eléments de calcul intégral. Généralités sur les intégrales doubles et triples. Généralités sur les intégrales curvilignes et de surface. Applications du calcul intégral.

Public
Enseignants et étudiants de l'enseignement supérieur technique (IUT, STS, classes préparatoires technologiques, universités) et formation continue (CNAM).

Resumé
Cet ouvrage contient 111 exercices entièrement corrigés, 12 sujets avec indications de solutions, et 80 figures illustrant les explications. Il est consacré à l'étude des séries (numériques et fonctionnelles), des transformations de fonctions (Laplace et Fourier) et des différentes sortes d'intégrations (multiples, curviligne, de surface) avec leurs applications. Cette série d'ouvrage vise à satisfaire entièrement aux exigences Mathématiques, scientifiques et techniques du premier cycle d'enseignement supérieur technique et à certains cours du deuxième cycle.

Availability: 100 In Stock

Sommaire

Eléments de combinatoire. Etude des complexes. Etude des suites. La récurrence. La continuité. La dérivation. Fonctions logarithme, exponentielle et puissance. Les équivalents. Les fonctions trigonométriques réciproques, hyperboliques et hyperboliques réciproques. La convexité. Les accroissements finis. Les polynômes. Les formules de Taylor-Lagrange, Taylor-Maclaurin et Taylor-Young. Les fractions rationnelles. Les développements limités. Etude de fonctions. L'intégration généralisée. Equations différentielles d'ordre 1 et d'ordre 2.

Public
Enseignants et étudiants de l'enseignement supérieur technique (IUT, STS, classes préparatoires technologiques, universités) et formation continue (CNAM).

Resumé
Cet ouvrage contient 121 exercices entièrement corrigés, 12 sujets avec indications de solutions, et des figures illustrant les explications. Une partie élément de cours avec exercices entièrement corrigés précède des annexes constitués de douze sujets avec indications des solutions et de tables complétant les éléments de cours. Il s'intègre dans une collection intitulée "Eléments de cours, exercices entièrement corrigés et sujets avec indications de solutions". Cette série d'ouvrage vise à satisfaire entièrement aux exigences Mathématiques, scientifiques et techniques du premier cycle d'enseignement supérieur technique et à certains cours du deuxième cycles.

Availability: 100 In Stock

Sommaire
I. Analyse en composantes principales : but et intérêt de la méthode, principe général de la méthode. II. Analyse des correspondances : but et intérêt de la méthode, exposé de la méthode.


Resumé
Cet ouvrage, en quatre volumes, est inspiré par une longue pratique des méthodes d'analyse des données. Il se propose d'offrir aux chercheurs dans le domaine des sciences de l'homme et aux étudiants un panorama complet des méthodes actuellement employées dans le traitement des grands tableaux de données issus d'enquêtes ou de mesures Physique-Astronomie s.

Availability: 100 In Stock

Sommaire
I. But et objet de la méthode. II. Les outils de la classification : indice de dissimilarité, dissimilarités classiques sur IRn, ultramétriques, dissimilarités sur un ensemble de parties, partition d'un ensemble, hiérarchies de parties, hiérarchie indicée de parties. III. Les principales méthodes de classification.

Public
Ces différents volumes représentent des outils indispensables pour les chercheurs dans le domaine des sciences de l'homme et pour les étudiants en Mathématiques et Economie.

Availability: 98 In Stock

 

Public

Etudiants et professeurs du premier cycle d'université.

 


Resumé
"Cette cinquième édition du cours de Mathématiques de 2e année d'Université est une version complètement refondue et révisée du cours et des exercices corrigés d'analyse. Cet ouvrage fait suite à l'ouvrage publié dans la même collection : "Mathématiques de 1re année".
Sommaire
Séries numériques. Intégrales généralisées. Limite d'une suite de fonctions. Intégrales dépendant d'un paramètre. Série entières. Normes et suite convergentes. Série de Fourier."

Availability: 95 In Stock

Sommaire
J.C. Leccia, professeur de Mathématiques spéciales, apporte sa compétence pour la préparation des élèves aux grands concours."

Public
Les agrégatifs trouvent là une mine d'exemples pour leurs leçons et les professeurs des classes préparatoires des thèmes pour leurs élèves.

Resumé
"Le concours de l'école Polytechnique est le concours de référence pour les élèves des classes préparatoires scientifiques. Aucun ouvrage à ce jour ne comportait d'une manière aussi exhaustive les problèmes posés à l'oral de cette prestigieuse école. J. Vauthier, après huit années passées à interroger au grand oral, livre ici ses exercices

This website uses cookies to ensure you get the best experience on our website