All was done with... MEASURE NUMBER WEIGHT

20,00 €
TTC
Quantité
Add to wishlist
In Stock

 

The often quoted sentence from the book of Wisdom "Thou hast ordered all things in measure, and number, and weight" is nowadays enlightened by the last results in Science. Following the emergence of both arithmetics and geometry, the author shows how the "The Unreasonable Effectiveness of Mathematics in the Natural Sciences" (Wigner) is amazing in contempory Physics. Numbers are there in quantum physics and geometry is present both in this theory and in Einstein's theory of relativity. But Gödel's theorem is there to temperate a willingness to have at hand a theory of all reality. Rota used to pinpoint "the pernicious influence of Mathematics on Philosophy" a reason for the author to make the point on the new "metaphysics of numbers" which is pervading all the modern philosophy. 
 
Jacques VAUTHIER is Honorary Professor of mathematics at the Sorbonne (Paris 6, Pierre and Marie Curie). He has written many books of mathematics and philosophy of science. He currently teaches at the University of Corsica Pascal Paoli the philosophy of science.
9782747218900
200 Produits
Nouveau

16 autres produits dans la même catégorie :

Availability: 100 In Stock

Sommaire
I. But et objet de la méthode. II. Les outils de la classification : indice de dissimilarité, dissimilarités classiques sur IRn, ultramétriques, dissimilarités sur un ensemble de parties, partition d'un ensemble, hiérarchies de parties, hiérarchie indicée de parties. III. Les principales méthodes de classification.

Public
Ces différents volumes représentent des outils indispensables pour les chercheurs dans le domaine des sciences de l'homme et pour les étudiants en Mathématiques et Economie.

Availability: 100 In Stock

Sommaire
I. Préliminaires II. Systèmes linéaires III. Calcul matriciel IV. Espaces vectoriels V. Applications linéaires. Matrices VI. L'algèbre des polynômes VII. Les déterminants VIII. Réduction d'un endomorphisme IX. Les suites X. Les fonctions "adaptées" aux suites : les fonctions continues XI. Comparaison. Etude locale d'une fonction XII. Etude globale des fonctions XIII. Intégration XIV. Equations différentielles XV. Eléments sur les fonctions de plusieurs variables.

Public
L'auteur s'est attaché à assurer la transition avec l'enseignement secondaire et offrir ainsi un livre qui peut être utilisé dès la fin de la terminale mais aussi pour la préparation du CAPES.

Resumé
Ce livre se veut le plus direct possible par un langage simple et vivant. Le style proche d'un cours d'amphithéâtre pour captiver le lecteur autant que faire se peut. Remarques, commentaires, annonces de résultats, tout doit concourir à faciliter le travail de l'étudiant qu'il doit sur un campus ou à distance. Des résumés en fin de chapitre rassemblent non seulement les résultats mais aussi les points clefs des démonstrations. L'étudiant sera aidé par là-même pour faire des exercices : les outils fondamentaux seront à sa disposition clairement exposés et non pas enfouis dans les démonstrations.

Availability: 100 In Stock

  Sommaire

I. R et les suites. II. Les fonctions "adaptées" aux suites : les fonctions continues. III. Comparaison, étude locale d'une fonction. IV. Etude globale des fonctions. V. Intégration et équations différentielles. VI. Eléments sur les fonctions de plusieurs variables. VII. Analyse numérique.

Public
Cet ouvrage s'adresse aux étudiants de DEUG ou bien préparant le CAPES, aux Classes Préparatoires et aux professeurs qui souhaitent avoir une approche didactique.

Availability: 99 In Stock

  Sommaire

I. Topologie. II. Analyse fonctionnelle. III. Nombres réels. IV. Suites numériques. V. Fonctions. VI. Intégration. VII. Séries. VIII. Equations différentielles. IX. Analyse numérique. X. Probabilités. XI. Sujets de synthèse.
Public
"""Le vade-mecum de l'oral d'analyse"" s'adresse aux candidats à l'agrégation de Mathématiques."

 

 

Availability: 100 In Stock

Sommaire

Eléments de combinatoire. Etude des complexes. Etude des suites. La récurrence. La continuité. La dérivation. Fonctions logarithme, exponentielle et puissance. Les équivalents. Les fonctions trigonométriques réciproques, hyperboliques et hyperboliques réciproques. La convexité. Les accroissements finis. Les polynômes. Les formules de Taylor-Lagrange, Taylor-Maclaurin et Taylor-Young. Les fractions rationnelles. Les développements limités. Etude de fonctions. L'intégration généralisée. Equations différentielles d'ordre 1 et d'ordre 2.

Public
Enseignants et étudiants de l'enseignement supérieur technique (IUT, STS, classes préparatoires technologiques, universités) et formation continue (CNAM).

Resumé
Cet ouvrage contient 121 exercices entièrement corrigés, 12 sujets avec indications de solutions, et des figures illustrant les explications. Une partie élément de cours avec exercices entièrement corrigés précède des annexes constitués de douze sujets avec indications des solutions et de tables complétant les éléments de cours. Il s'intègre dans une collection intitulée "Eléments de cours, exercices entièrement corrigés et sujets avec indications de solutions". Cette série d'ouvrage vise à satisfaire entièrement aux exigences Mathématiques, scientifiques et techniques du premier cycle d'enseignement supérieur technique et à certains cours du deuxième cycles.

Availability: 100 In Stock

 

La fameuse phrase, qui constitue le titre de cet ouvrage et qui a tant plongé dans la perplexité des générations de philosophes, est tirée du Livre de la Sagesse. Elle trouve aujourd’hui une nouvelle interprétation. Une histoire des nombres et en particulier du nombre 0 est une introduction à une approche d’un pythagorisme latent de la science contemporaine. Malgré cette mise en garde, une métaphysique du nombre innerve la pensée contemporaine et la pythagorise.  En conclusion, un regard sur la causalité en mathématique tentera d’éclairer le concept d’objet mathématique et du platonisme qui est si souvent présent chez les mathématiciens.
 
Jacques VAUTHIER est professeur honoraire de mathématiques de la Sorbonne (Paris 6, Pierre et Marie Curie). Il enseigne actuellement à l’université de Corse, Pascal Paoli la philosophie des sciences.
Availability: 100 In Stock

Sommaire
I. Analyse en composantes principales : but et intérêt de la méthode, principe général de la méthode. II. Analyse des correspondances : but et intérêt de la méthode, exposé de la méthode.


Resumé
Cet ouvrage, en quatre volumes, est inspiré par une longue pratique des méthodes d'analyse des données. Il se propose d'offrir aux chercheurs dans le domaine des sciences de l'homme et aux étudiants un panorama complet des méthodes actuellement employées dans le traitement des grands tableaux de données issus d'enquêtes ou de mesures Physique-Astronomie s.

Availability: 98 In Stock

  Public

Les étudiants préparant le DEUG de Mathématiques, les concours aux Grandes Ecoles.

Resumé
"Le présent livre de M. et P. Krée - J. Vauthier est une version complètement refondue et révisée de la partie de trois volumes concernant le cours et les exercices corrigés de géométrie. Cet ouvrage fait suite à l'ouvrage publié cette année dans la même collection : " Mathématiques de 1re année " J. Vauthier avec la collaboration de C. Cazes et A.C. Vauthier."

Availability: 95 In Stock

Sommaire
J.C. Leccia, professeur de Mathématiques spéciales, apporte sa compétence pour la préparation des élèves aux grands concours."

Public
Les agrégatifs trouvent là une mine d'exemples pour leurs leçons et les professeurs des classes préparatoires des thèmes pour leurs élèves.

Resumé
"Le concours de l'école Polytechnique est le concours de référence pour les élèves des classes préparatoires scientifiques. Aucun ouvrage à ce jour ne comportait d'une manière aussi exhaustive les problèmes posés à l'oral de cette prestigieuse école. J. Vauthier, après huit années passées à interroger au grand oral, livre ici ses exercices

Availability: 98 In Stock

  Sommaire

Eléments sur les suites et séries. Suites et séries numériques. Suites et séries de fonctions. Séries entières. Série de Fourier. Eléments sur les transformations fonctionnelles. Transformations de Laplace. Transformations de Fourier. Eléments de calcul intégral. Généralités sur les intégrales doubles et triples. Généralités sur les intégrales curvilignes et de surface. Applications du calcul intégral.

Public
Enseignants et étudiants de l'enseignement supérieur technique (IUT, STS, classes préparatoires technologiques, universités) et formation continue (CNAM).

Resumé
Cet ouvrage contient 111 exercices entièrement corrigés, 12 sujets avec indications de solutions, et 80 figures illustrant les explications. Il est consacré à l'étude des séries (numériques et fonctionnelles), des transformations de fonctions (Laplace et Fourier) et des différentes sortes d'intégrations (multiples, curviligne, de surface) avec leurs applications. Cette série d'ouvrage vise à satisfaire entièrement aux exigences Mathématiques, scientifiques et techniques du premier cycle d'enseignement supérieur technique et à certains cours du deuxième cycle.

Availability: 98 In Stock

 

Public

Etudiants et professeurs du premier cycle d'université.

 


Resumé
"Cette cinquième édition du cours de Mathématiques de 2e année d'Université est une version complètement refondue et révisée du cours et des exercices corrigés d'analyse. Cet ouvrage fait suite à l'ouvrage publié dans la même collection : "Mathématiques de 1re année".
Sommaire
Séries numériques. Intégrales généralisées. Limite d'une suite de fonctions. Intégrales dépendant d'un paramètre. Série entières. Normes et suite convergentes. Série de Fourier."

This website uses cookies to ensure you get the best experience on our website