EXERCICES DE MATHÉMATIQUES : DEUG 2e année - volume 2 : algèbre

22,87 €
TTC
Quantité
Add to wishlist
In Stock

Sommaire
"Algèbre : - Polynôme minimum - Théorie spectrale d'un endomorphisme - Réduction de la matrice d'un endomorphisme - Système différentiel - Espaces hermitiens et euclidiens - Système orthonormés - Formes bilinéaires - Adjoint. Opérateurs hermitiens et unitaires - Endomorphismes normaux - Quadriques et coniques.
Géométrie : - Courbes et surfaces - Intégrales multiples - Formes différentielles, intégrales de surface - Théorème de Stokes - Théorème des résidus."

Public
L'étudiant dispose ainsi, avec les deux volumes de cours et les trois volumes d'exercices, d'un outil de travail complet pour suivre sa progression scientifique et couvrir le programme des deux premiè

 


Resumé
Les exercices proposés ici répondent à un double objectif : assimiler en profondeur des notions nouvelles, puis être capable d'aborder des sujets plus élaborés. Ils sont précédés, par chapitre, de commentaires permettant de mieux centrer le travail de l'étudiant sur les points clés du programme. Les exercices notés A, de difficulté croissante, éclairent les théorèmes et les techniques fondamentaux. Les exercices notés B sont des sujets d'examens ou des textes demandant plus de recherche.

 

2.86911.018.9
95 Produits
Nouveau

16 autres produits dans la même catégorie :

Availability: 99 In Stock

Sommaire
I. Séries numériques. II. Intégrales généralisées. III. Limite d'une suite de fonctions. IV. Intégrales dépendant d'un paramètre. V. Séries entières. VI. Normes en calcul vectoriel appliqué. VII. Convergence de suites de vecteurs. VIII. Analyse de Fourier des signaux périodiques. IX. Utilisation de résultats de topologie. X. Calcul différentiel.

Public
L'étudiant dispose, avec les deux volumes de cours et les trois volumes d'exercices, d'un outil de travail complet pour suivre sa progression scientifique et couvrir le programme des deux premières an

Resumé
Les exercices proposés ici répondent à un double objectif : assimiler en profondeur des notions nouvelles puis être capable d'aborder des sujets plus élaborés. Ils sont précédés, par chapitre, de commentaires permettant de mieux centrer le travail de l'étudiant sur les points clés du programme. A chaque chapitre sont associés des exercices spécifiques : les exercices notés A, de difficulté croissante, éclairent les théorèmes et les techniques fondamentaux. Les exercices notés B sont des sujets d'examens ou des textes demandant plus de recherche.

 

Availability: 98 In Stock

  Sommaire

Eléments sur les suites et séries. Suites et séries numériques. Suites et séries de fonctions. Séries entières. Série de Fourier. Eléments sur les transformations fonctionnelles. Transformations de Laplace. Transformations de Fourier. Eléments de calcul intégral. Généralités sur les intégrales doubles et triples. Généralités sur les intégrales curvilignes et de surface. Applications du calcul intégral.

Public
Enseignants et étudiants de l'enseignement supérieur technique (IUT, STS, classes préparatoires technologiques, universités) et formation continue (CNAM).

Resumé
Cet ouvrage contient 111 exercices entièrement corrigés, 12 sujets avec indications de solutions, et 80 figures illustrant les explications. Il est consacré à l'étude des séries (numériques et fonctionnelles), des transformations de fonctions (Laplace et Fourier) et des différentes sortes d'intégrations (multiples, curviligne, de surface) avec leurs applications. Cette série d'ouvrage vise à satisfaire entièrement aux exigences Mathématiques, scientifiques et techniques du premier cycle d'enseignement supérieur technique et à certains cours du deuxième cycle.

Availability: 100 In Stock

Sommaire
I. Généralités. II. Un problème de discrimination. III. Incertitude. IV. Algorithme de SIPINA. V. Logiciel de SIPINA. VI. Applications.

Public
Cet ouvrage répond à des problèmes posés par des sociologues, biologistes, psychologues, médecins et leur apportera des réponses à leur recherche.

 

Availability: 100 In Stock

  Sommaire

I. Rappels, groupes, anneau, corps, les nombres complexes. II. Systèmes linéaires. III. Calcul matriciel. IV. Espaces vectoriels. V. Applications linéaires. Matrices. IV. Les suites de nombres réels. VII. Les fonctions continues. VIII. Le calcul différentiel. IX. L'intégration. X. Les séries.

Public
Cet ouvrage a pour objectif d'aider tous ceux qui vont affronter les classes préparatoires avant les concours d'entrée aux grandes écoles.

Resumé
Tout le monde s'accorde à dire que le passage des élèves de terminale en classes préparatoires est redoutable par le fossé qu'il faut franchir. Les programmes du secondaire n'ont plus pour ambition de préparer à ces classes de concours où la masse de données scientifiques est incomparable en regard des connaissances de tout bachelier. Ce livre est là pour aider à acquérir ce qu'un bon bachelier devrait connaître des structures, de l'algèbre linéaire et de l'analyse. Ecrit sur un mode plaisant, il doit aider en un mois d'été à se mettre dans la perspective d'une classe préparatoire : c'est un travail nécessaire pour qui veut réussir dans ces classes.

 

This website uses cookies to ensure you get the best experience on our website