EXERCICES DE MATHÉMATIQUES : DEUG 2e année - volume 1 : analyse

22,87 €
TTC

Sommaire
I. Séries numériques. II. Intégrales généralisées. III. Limite d'une suite de fonctions. IV. Intégrales dépendant d'un paramètre. V. Séries entières. VI. Normes en calcul vectoriel appliqué. VII. Convergence de suites de vecteurs. VIII. Analyse de Fourier des signaux périodiques. IX. Utilisation de résultats de topologie. X. Calcul différentiel.

Public
L'étudiant dispose, avec les deux volumes de cours et les trois volumes d'exercices, d'un outil de travail complet pour suivre sa progression scientifique et couvrir le programme des deux premières an

Resumé
Les exercices proposés ici répondent à un double objectif : assimiler en profondeur des notions nouvelles puis être capable d'aborder des sujets plus élaborés. Ils sont précédés, par chapitre, de commentaires permettant de mieux centrer le travail de l'étudiant sur les points clés du programme. A chaque chapitre sont associés des exercices spécifiques : les exercices notés A, de difficulté croissante, éclairent les théorèmes et les techniques fondamentaux. Les exercices notés B sont des sujets d'examens ou des textes demandant plus de recherche.

 

Quantité
Add to wishlist
In Stock

Sommaire
I. Séries numériques. II. Intégrales généralisées. III. Limite d'une suite de fonctions. IV. Intégrales dépendant d'un paramètre. V. Séries entières. VI. Normes en calcul vectoriel appliqué. VII. Convergence de suites de vecteurs. VIII. Analyse de Fourier des signaux périodiques. IX. Utilisation de résultats de topologie. X. Calcul différentiel.

Public
L'étudiant dispose, avec les deux volumes de cours et les trois volumes d'exercices, d'un outil de travail complet pour suivre sa progression scientifique et couvrir le programme des deux premières an

Resumé
Les exercices proposés ici répondent à un double objectif : assimiler en profondeur des notions nouvelles puis être capable d'aborder des sujets plus élaborés. Ils sont précédés, par chapitre, de commentaires permettant de mieux centrer le travail de l'étudiant sur les points clés du programme. A chaque chapitre sont associés des exercices spécifiques : les exercices notés A, de difficulté croissante, éclairent les théorèmes et les techniques fondamentaux. Les exercices notés B sont des sujets d'examens ou des textes demandant plus de recherche.

 

2.86911.017.0
99 Produits
Nouveau

16 autres produits dans la même catégorie :

Availability: 100 In Stock

Sommaire
I. But et objet de la méthode. II. Les outils de la classification : indice de dissimilarité, dissimilarités classiques sur IRn, ultramétriques, dissimilarités sur un ensemble de parties, partition d'un ensemble, hiérarchies de parties, hiérarchie indicée de parties. III. Les principales méthodes de classification.

Public
Ces différents volumes représentent des outils indispensables pour les chercheurs dans le domaine des sciences de l'homme et pour les étudiants en Mathématiques et Economie.

Availability: 100 In Stock

Sommaire
I. Analyse en composantes principales : but et intérêt de la méthode, principe général de la méthode. II. Analyse des correspondances : but et intérêt de la méthode, exposé de la méthode.


Resumé
Cet ouvrage, en quatre volumes, est inspiré par une longue pratique des méthodes d'analyse des données. Il se propose d'offrir aux chercheurs dans le domaine des sciences de l'homme et aux étudiants un panorama complet des méthodes actuellement employées dans le traitement des grands tableaux de données issus d'enquêtes ou de mesures Physique-Astronomie s.

Availability: 100 In Stock

Sommaire
I. Généralités. II. Un problème de discrimination. III. Incertitude. IV. Algorithme de SIPINA. V. Logiciel de SIPINA. VI. Applications.

Public
Cet ouvrage répond à des problèmes posés par des sociologues, biologistes, psychologues, médecins et leur apportera des réponses à leur recherche.

 

Availability: 99 In Stock

  Sommaire

I. Topologie. II. Analyse fonctionnelle. III. Nombres réels. IV. Suites numériques. V. Fonctions. VI. Intégration. VII. Séries. VIII. Equations différentielles. IX. Analyse numérique. X. Probabilités. XI. Sujets de synthèse.
Public
"""Le vade-mecum de l'oral d'analyse"" s'adresse aux candidats à l'agrégation de Mathématiques."

 

 

This website uses cookies to ensure you get the best experience on our website